Upregulation of miR-137 protects anesthesia-induced hippocampal neurodegeneration.
نویسندگان
چکیده
PURPOSE Ketamine is commonly used in pediatric anesthesia but may cause neurodegeneration in young brains. The aim of the study is to use an animal model to characterize the role of microRNA 137 (miR-137) in ketamine-induced neurodegeneration in neonatal hippocampus. METHODS Young Sprague-Dawley Rats (1 month old) was systemically administrated with ketamine (75 mg/kg) for 3 days. TUNEL assay was used to assess the ketamine-induced neurodegeneration of hippocampal CA1 neurons, quantitative real-time PCR (qRT-PCR) to assess the expression of miR-137 and Morris water maze test (MWM) to assess the damaged memory function. Alternatively, lentivirus over-expressing miR-137 was injected into hippocampus before ketamine administration, and the subsequent effects of miR-137 upregulation on ketamine-induced hippocampal neurodegeneration and memory dysfunction were investigated. Furthermore, the direct downstream target of miR-137, CDC42, was down-regulated by siRNA injection into hippocampus. The effects of CDC42 inhibition on hippocampal apoptosis and memory function were also investigated. RESULTS Excessive ketamine treatment resulted in severe apoptosis in hippocampal CA1 neurons, downregulation of miR-137 in hippocampus and significant long-term memory dysfunction. Conversely, pre-treatment of overexpressing miR-137 protected hippocampal neurodegeneration and memory loss. The molecular target of miR-137, CDC42 was down-regulated by ketamine in hippocampus. Knocking down hippocampal CDC42 exerted an apoptotic effect on hippocampal neurons and memory loss, similar to the effect of ketamine treatment. CONCLUSIONS Our results demonstrated that miR-137 played an important role in regulating ketamine induced hippocampal neurodegeneration, possibly through CDC42.
منابع مشابه
MicroRNA-383 upregulation protects against propofol-induced hippocampal neuron apoptosis and cognitive impairment
Anesthesia-induced cognitive impairment is a recognized clinical phenomenon. The present study aimed to investigate the effect of microRNA-383 (miR-383) expression on propofol-induced learning and memory impairment. In total, 48 male Sprague-Dawley rats (weight, 250±10 g) were randomly divided into four groups (n=12 each): Control group, and three groups of rats that were anesthetized with prop...
متن کاملMicroRNA-34a negatively regulates anesthesia-induced hippocampal apoptosis and memory impairment through FGFR1.
BACKGROUND Mounting evidence has shown the toxic effects of anesthesia to neonatal hippocampus. We used an in vivo mouse model to explore the role of microRNA 34a (miR-34a) in regulating anesthesia-induced hippocampal neurotoxicity. METHODS One-month old C57/BL6 mice received daily intraperitoneal injection of anesthesia (ketamine, 50 mg/kg) for 7 days. One day after, apoptosis was evaluated ...
متن کاملMicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation–induced apoptosis
Hypoxic-ischemic brain injury (HIBI) results in death or long-term neurologic impairment in both adults and children. In this study, we investigated the effects of microRNA-132 (miR-132) dysregulation on oxygen-glucose deprivation (OGD)-induced apoptosis in fetal rat hippocampal neurons, in order to reveal the therapeutic potential of miR-132 on HIBI. MiR-132 dysregulation was induced prior to ...
متن کاملAlterations in adult hippocampal neurogenesis, aberrant protein s-nitrosylation, and associated spatial memory loss in streptozotocin-induced diabetes mellitus type 2 mice
Objective(s): Epidemiological and biochemical studies conducted over the past two decades have established a strong link between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD). However, the exact mechanisms through which aberrations in insulin signaling associated with T2DM contribute to cognitive decline are not yet known. Materials and Methods: In an effort to explore possible m...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of clinical and experimental pathology
دوره 7 8 شماره
صفحات -
تاریخ انتشار 2014